On rotated Schur-positive sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Staircase Skew Schur Functions Are Schur P -positive

We prove Stanley’s conjecture that, if δn is the staircase shape, then the skew Schur functions sδn/μ are non-negative sums of Schur P -functions. We prove that the coefficients in this sum count certain fillings of shifted shapes. In particular, for the skew Schur function sδn/δn−2 , we discuss connections with Eulerian numbers and alternating permutations.

متن کامل

Schur–weyl Duality in Positive Characteristic

Complete proofs of Schur–Weyl duality in positive characteristic are scarce in the literature. The purpose of this survey is to write out the details of such a proof, deriving the result in positive characteristic from the classical result in characteristic zero, using only known facts from representation theory.

متن کامل

What Makes a D0 Graph Schur Positive?

We define a D0 graph to be a graph whose vertex set is a subset of permutations of n, with edges of the form · · · bac · · ·! · · · bca · · · or · · · acb · · ·! · · · cab · · · (Knuth transformations), or · · · bac · · ·! · · · acb · · · or · · · bca · · ·! · · · cab · · · (rotation transformations), such that whenever the Knuth and rotation transformations at positions i−1, i, i+1 are availab...

متن کامل

Positive sets and monotone sets

In this paper, we show how convex analysis can be applied to the theory of sets that are “positive” with respect to a continuous quadratic form on a Banach space. Monotone sets can be considered as a special case of positive sets, and we show how our results lead to very efficient proofs of a number of results on monotone sets. One of the key techniques that we use is a generalization of the Fi...

متن کامل

Projecting Difference Sets on the Positive Orthant

Let n 1 be an integer. Given a vector a = (a1, . . . , an) ∈ R, write a := (max{a1, 0}, . . . ,max{an, 0}) (the ‘projection of a onto the positive orthant’). For a set A ⊆ R put A+ := {a+ : a ∈ A} and A− A := {a− b : a, b ∈ A}. Improving previously known bounds, we show that |(A− A)+| |A|3/5/6 for any finite set A ⊆ R3, and that |(A− A)+| c|A|6/11/(log |A|)2/11 with an absolute constant c > 0 f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2017

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2017.06.002